Organic & Biomolecular Chemistry

Cite this: Org. Biomol. Chem., 2012, 10, 2326

www.rsc.org/obc

Asymmetric synthesis of α , β -diamino acid derivatives with an aziridine-, azetidine- and γ -lactone-skeleton *via* Mannich-type additions across α -chloro-*N*-sulfinylimines[†]

Gert Callebaut,‡^a Sven Mangelinckx,§^a Loránd Kiss,^b Reijo Sillanpää,^c Ferenc Fülöp^b and Norbert De Kimpe*^a

Received 26th September 2011, Accepted 8th December 2011 DOI: 10.1039/c2ob06637h

The efficient asymmetric synthesis of new chiral γ -chloro- α , β -diamino acid derivatives *via* highly diastereoselective Mannich-type reactions of *N*-(diphenylmethylene) glycine esters across a chiral α -chloro-*N*-*p*-toluenesulfinylimine was developed. The influence of the base, LDA or LiHMDS, used for the formation of the glycine enolates, was of great importance for the *anti-/syn*-diastereoselectivity of the Mannich-type reaction. The γ -chloro- α , β -diamino acid derivatives proved to be excellent building blocks for ring closure towards optically pure *anti*- and *syn*- β , γ -aziridino- α -amino esters, and subsequent ring transformation into *trans*-3-aminoazetidine-2-carboxylic acid derivatives and α , β -diamino- γ -butyrolactones.

Introduction

Nature uses α -amino acid derivatives with a leaving group at the γ -position as versatile building blocks in the biosynthesis of a broad range of biologically important natural products. For example, (S)-adenosylmethionine (SAM) is a biological sulfonium compound that is involved in many biological processes. SAM is the second most common co-enzyme in the human body, after ATP, and it is known as the major biological methyl donor in reactions catalyzed by methyltransferases.¹ Enzymological studies have demonstrated that SAM is not only used as a methyl donor in biological reactions, but that SAM is also a precursor for a variety of natural products such as 1-aminocyclopropane-1-carboxylic acid (α -ACC), precursor of the plant hormone ethylene, N-acylhomoserine lactones (AHLs), signal molecules involved in bacterial quorum sensing, and L-azetidine-2-carboxylic acid (L-Aze), a non-proteinogenic amino acid homologue of proline.^{1c,2} Besides the biosynthesis of these carbocyclic

and heterocyclic compounds starting from SAM, γ -chloro- α -amino acids also constitute excellent precursors for the preparation of these molecules.³ Moreover, γ -chloro- α -amino acids are involved in the biosynthesis of a wide range of natural products such as cytotrienins (apoptosis-inducing *Streptomycete* metabolite),^{3a} coronatine (phytotoxin),^{3b,3c} and bactobolins (antibiotic activity).⁴

Some γ -chloro- α -amino acids are also biologically active as a free amino acid, such as armentomycin, a non-proteinogenic amino acid with antibiotic properties,^{3a,5} and 4-chloro-L-threo-nine, which is biologically active as a serine hydroxymethyl-transferase-inhibitor,^{3d} and as a herbicidal antimetabolite.⁶ 4-Chloro-L-threonine is also a constituent of naturally occurring syringomycins (antifungal compound),⁷ and actinomycins (cyto-toxic and antibacterial compound).⁸

Next to γ -chloro- α -amino acid derivatives, β -amino acids⁹ and α , β -diamino acid derivatives have also gained a lot of attention as non-proteinogenic amino acids for different reasons. Several of these biologically important compounds, such as β -(*N*-oxalyl)-L- α , β -diaminopropionic acid (neurotoxin),¹⁰ β -methyla-mino-L-alanine (neurotoxin),¹¹ L-quisqualic acid (vermicide),¹² L-mimosine (cell proliferation blocker),¹³ and L-willardine (agonist of AMPA and kainate receptor)¹⁴ are found in this group of atypical amino acids.

α,β-Diamino acids can also serve as building blocks for the synthesis of new heterocyclic compounds and peptides.¹⁵ Previously published results disclosed the successful racemic synthesis and elaboration of γ-chloro-α,β-diamino acid derivatives *via* a Mannich-type addition of 'benzophenone imine glycinates' across *N*-(*p*-toluenesulfonyl) α-chloroaldimines.¹⁶ Results

^aDepartment of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium. E-mail: norbert.dekimpe@UGent.be; Fax: +32

^{(0)9 264 62 21;} Tel: +32 (0)9 264 59 51 ^bInstitute of Pharmaceutical Chemistry, University of Szeged, H-6701

Szeged, P.O. Box 427, Hungary

^cDepartment of Chemistry, University of Jyväskylä, Fin-40351

Jyväskylä, Finland

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/c2ob06637h

^{*} Aspirant of the "Institute for the Promotion of Innovation through Science and Technology – Flanders (IWT-Vlaanderen)".

[§]Postdoctoral Fellow of the Research Foundation - Vlaanderen (FWO)

Cytotrienin A (R = 1-cyclohexenyl) Cytotrienin B (R = cyclohexyl)

discussed within the present paper demonstrate the first asymmetric synthesis and elaboration of γ -chloro- α , β -diamino acid derivatives, as new building blocks for heterocyclic scaffolds, which incorporate the biologically interesting γ -chloro- α -amino acid moiety as well as the α , β -diamino acid moiety.

Results and discussion

The new chiral α -chloro-*N*-sulfinylimine **3** was efficiently prepared by condensation of α -chloroisobutyraldehyde **1** with (*S*)-(+)-*p*-toluenesulfinamide **2** in dichloromethane in the presence of Ti(OEt)₄ (Scheme 1).¹⁷

The stereoselective synthesis of chiral azaheterocyclic α , β -diamino acid derivatives was performed *via* a Mannich-type addition of *N*-protected glycine esters **4** across chiral α -chloro-*N*sulfinylimine **3** and was optimized by systematically changing the reaction conditions (Scheme 2, Table 1) in the synthesis of γ -chloro- α , β -diamino esters **5a**. It was found that the base, LDA or LiHMDS, used for the deprotonation of the glycine ester **4a**, had a dramatic influence on the *syn*- or *anti*-selectivity of the reaction (Table 1).

In a first reaction (Table 1, entry 1), the Mannich-type addition of ethyl glycinate **4a** across chiral α -chloro-*N*-*p*-toluenesulfinyl isobutyraldimine **3** was performed at -78 °C using five

Scheme 1 Synthesis of chiral *N*-(2-chloro-2-methylpropylidene) *p*-toluenesulfinamide **3**.

of γ-chloro- α ,β-diamino acid cks for heterocyclic scaffolds, y interesting γ-chloro- α -amino nino acid moiety. A-Chloro-L-threonineylimine 3 was efficiently preoisobutyraldehyde 1 with (*S*)hloromethane in the presence chiral azaheterocyclic α ,β-diaformed via a Mannich-type ters 4 across chiral α -chloro-*N*ed by systematically changing 2, Table 1) in the synthesis of was found that the base, LDA nation of the glycine ester 4a, syn- or anti-selectivity of the 1), the Mannich-type addition I α -chloro-*N*-p-toluenesulfinyl ned at -78 °C using five 4

equivalents of LiHMDS. ¹H NMR of the crude reaction mixture indicated that the resulting syn- γ -chloro- α , β -diamino ester syn-5a was obtained with good syn-selectivity (dr = 93:7). The synadduct syn-5a was isolated as a single diastereomer in a yield of 63% after purification by column chromatography and subsequent recrystallization. Repeating the reaction with 1.1 equivalents of LiHMDS (entry 2) led to the formation of syn-y-chloro- α,β -diamino ester syn-5a in an excellent syn-selectivity (dr = 99:1) after recrystallization in 88% yield. When 1.1 equivalents of the enolate were used, column chromatography to purify the syn-adduct syn-5a could be avoided which resulted in an improved vield. The use of methyl glycinate 4b using the same (entry 3) conditions resulted in a similar syn-selectivity (dr = 97:3) and yield (86%). In the following reaction (entry 4), the Mannich-type addition was performed with 1.1 equivalents of LDA, resulting in γ -chloro- α , β -diamino ester *anti*-5a with good anti-selectivity (dr = 87:13). The anti- γ -chloro- α , β -diamino ester anti-5a was obtained in 79% yield as a mixture of two diastereomers (dr 89:11) after purification by column chromatography. Unfortunately, the anti-adduct anti-5a was not crystalline and could not be obtained as a single diastereomer. In order to improve the diastereoselectivity, the reaction was conducted with 1.6 equivalents of LDA (entry 5), according to a procedure as reported for the synthesis of anti-ethyl diamino-3phenylpropanoates from N-(benzylidene)-p-toluenesulfinamide and glycine enolates.^{18a} These conditions led to a slightly better diastereoselectivity (dr 90:10), but unfortunately the anti- γ -chloro- α , β -diamino ester *anti*-5a was obtained in a lower yield of 55% as a mixture of two diastereomers (dr 90:10) after purification by tedious column chromatography. Next, tert-butyl glycinate 4c was subjected to the Mannich-type reaction conditions with α -chloro-*N*-*p*-toluenesulfinyl isobutyraldimine **3** using 1.6 equivalents of LDA (entry 6). The resulting anti- γ -chloro- α , β -diamino ester *anti*-5c was obtained with moderate anti-selectivity (dr = 72:28) and was isolated in 52% yield as a mixture of two diastereomers (dr 81:19) after purification by column chromatography.

Both the *syn*- and *anti*-addition products **5** were subsequently cyclized to the corresponding *N*-sulfinylaziridines **6** (Scheme 2) upon treatment with K_2CO_3 in acetone under reflux in good to excellent isolated yields (73–99%). The *syn*-*N*-sulfinylaziridine *syn*-**6a** could also be prepared directly in 72% yield *via* a

Scheme 2 Synthesis of syn-and anti-N-sulfinylaziridines 6.

 Table 1
 Addition of N-(diphenylmethylene) glycine esters 4 across N-p-toluenesulfinylimine 3 producing syn-and anti-addition products 5

Entry	Ester	Base	Equiv. Enolate	Time/Temp	<i>syn/anti</i> ratio ^a	Product	Yield (%)
1	4a	LiHMDS	5	15 min78 °C	93:7	svn-5a	63^b
2	4a	LiHMDS	1.1	15 min, -78 °C	$99:1^{c}$	svn-5a	88^b
3	4b	LiHMDS	1.1	15 min, -78 °C	97:3 ^c	syn-5b	86^b
4	4a	LDA	1.1	5 min, -90 °C	13:87	anti-5a	79^d
5	4a	LDA	1.6	5 min, -90 °C	10:90	<i>anti-</i> 5a	55^e
6	4c	LDA	1.6	5 min, -90 °C	28:72	anti-5c	52^{f}
7	4a	LiHMDS	1.1	15 min, -78 °C; 2 h, rt	>99:0	syn-6a	72^{b}
8	4a	LDA	1.1	5 min, -90 °C; 2 h, rt	>99:0	syn-6a	—

^{*a*} Determinated via ¹H NMR of crude reaction mixtures with syn-5 or syn-6 as standard ^{*b*} Isolated yield of single diastereomer (dr >97:3) ^{*c*} Determinated via ¹H NMR after recrystallisation of crude reaction mixtures ^{*d*} Isolated yield of *anti*- and *syn*-diastereomers (dr 89:11) ^{*e*} Isolated yield of *anti*- and *syn*-diastereomers (dr 90:10) ^{*f*} Isolated yield of *anti*- and *syn*-diastereomers (dr 81:19)

single-step reaction starting from ethyl glycinate **4a**, if the reaction mixture from the Mannich-type addition across imine **3** after 15 min at -78 °C was subsequently stirred for two hours at room temperature (Table 1, entry 7). This procedure was not applicable for the synthesis of *anti-N*-sulfinylaziridines *anti*-**6** as the *anti*-adducts are the kinetically favored diastereomers which isomerize to the thermodynamically more stable *syn*-isomers (entry 8). The absolute stereochemistry of the *anti-N-p*-toluene-sulfinylaziridine *anti*-**6** and *syn*-adduct *syn*-**5** a were unambiguously determined by means of X-ray diffraction analysis (Fig. 1).

The dramatic influence of the base, LDA or LiHMDS (Scheme 2), on the stereochemical outcome of the Mannich-type reaction across α -chloro-*N*-sulfinylimine **3** under kinetic conditions (for example -90 °C, 5 min) is rationalized on the basis of the enolate geometry of the anions derived from the

deprotonation of *N*-(diphenylmethylene) glycine esters **4**. As reported in the literature, the enolates obtained *via* deprotonation of *N*-(diphenylmethylene) glycine esters **4** with LDA are expected to have the *Z*-geometry (Scheme 3), which is favoured by intramolecular chelation.¹⁸ As commonly performed in the assignment of enolate geometry, in contrast to conventional *E/Z*-nomenclature, the highest priority designation is allocated to the O-metal group of the enolate substituents. Alternatively, we suggest that upon deprotonation of *N*-(diphenylmethylene) glycine esters **4** with the less basic LiHMDS in THF, a shift towards the formation of the *E*-enolate occurs (Scheme 3). Unfortunately, the enolate geometry could not be determinated *via* trapping experiments with TMSC1.¹⁹ Reaction of the *Z*- and *E*-enolates *via* **TS-7a** and **TS-7b** (Scheme 3) results in the formation of *anti-***5**, respectively.^{18a}

Fig. 1 X-ray diffraction analysis of anti-N-sulfinylaziridine anti-6a and syn-adduct syn-5a.

^a For the assignment of the E/Z-geometry of the enolates, the highest priority designation is allocated to the O-metal group of the enolate substituents.

Scheme 3 Transition state model for the reaction of Z- and E-enolate of glycine esters 4 in the Mannich-type addition across chiral N-(2-chloro-2-methylpropylidene) p-toluenesulfinamide 3.^a

The *N*-protective groups of *anti*-aziridine **6a** (Scheme 4) were readily removed by treatment with five equivalents of trifluoro-acetic acid in acetone/water (2:1) at room temperature for 15 min, resulting in the *N*-deprotected *anti*- β , γ -aziridino- α -amino ester **8** in 78% yield after a basic workup with NH₄OH.²⁰

The *N*-sulfinyl β , γ -aziridino moiety of aziridine *anti*-6a could be functionally equivalent to the γ -chloro substituent of natural

Scheme 4 Deprotection of anti-aziridine anti-6a with TFA.

Scheme 5 Synthesis of aziridine anti-9 and further transformation into 3-amino-1,5-dihydropyrrol-2-one 11.

Table 2 Different reaction conditions for the ring transformation of aziridine anti-9

EntrySolventEquiv. baseBaseTempTimeResultYield1THF1KOtBu Δ 2.5 h11 $87\%^a$ 2THF1NaH Δ 1 h11 $45\%^b$ 3EtOH3K2CO3 Δ 22 h11 $98\%^a$ 4DMSO3K2CO3 Δ 22 hComplex mixture $-$ 5DMSO2.5NaH80 °C2 h11 $56\%^b$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry	Solvent	Equiv. base	Base	Temp	Time	Result	Yield
	1 2 3 4 5	THF THF EtOH DMSO DMSO	1 1 3 3 2.5	KOtBu NaH K_2CO_3 K_2CO_3 NaH	Δ Δ Δ Δ 80 °C	2.5 h 1 h 22 h 22 h 2 h	11 11 11 Complex mixture 11	87% ^a 45% ^b 98% ^a 56% ^b

^{*a*} Yield after precipitation of dihydropyrrol-2-one **11** in diethyl ether ^{*b*} Yield after recrystallization from diethyl ether

Scheme 6 Reaction mechanism for the synthesis of 3-amino-1,5-dihydropyrrol-2-one 11.

 γ -chloro- α -amino acids,³ or the adenosyl-S⁺-CH₃ cation of SAM,¹ in activating the γ -carbon as an electrophile. Eventually, this reactivity could be used in a ring transformation via intramolecular N-alkylation to the corresponding trans-\beta-aminoazetidine-2-carboxylate 10. The N-diphenylmethylene group of anti-N-sulfinylaziridine anti-6a (Scheme 5) was reduced with NaCNBH₃ in the presence of acetic acid in MeOH, resulting in aziridine *anti-9* containing a nucleophilic α -amino function (68% yield). Several attempts were made to achieve the ring transformation of N-sulfinylaziridine anti-9 into trans-\beta-aminoazetidine-2-carboxylate 10, albeit without success (Scheme 5, Table 2). A possible explanation for this failure is the poorer electron-withdrawing character of the *p*-toluenesulfinyl group, relative to the *p*-toluenesulfonyl group. Previously, the latter sulfonyl group allowed to achieve an intramolecular ring opening towards the corresponding azetidines.^{16b}

An initial attempt using similar reaction conditions as in our previously reported ring transformation into racemic *anti-N*-tosylazetidines, *via* heating in acetonitrile in the presence of one equivalent Et₃N,^{16b} did not result in the formation of *trans*- β -aminoazetidine-2-carboxylate **10**. Also, use of more equivalents of triethylamine, other solvents (EtOH, DMSO), and/or

increased reaction times and temperatures, did not lead to the desired conversion. Reaction with one equivalent of $BF_3 \cdot Et_2O$ at room temperature for 20 h resulted in a complex reaction mixture, in which the *trans*- β -aminoazetidine-2-carboxylate **10** was not detected. Also the use of one equivalent LiHMDS led to a complex reaction mixture after heating at reflux for 2.5 h. When aziridine **9** was treated with one equivalent KOtBu in THF at reflux temperature for 2.5 h (Table 2, entry 1), the selective formation of 3-amino-1,5-dihydropyrrol-2-one **11** was observed and isolated in 87% yield.

The proposed reaction mechanism begins with deprotonation at the α -position of the ester, which leads to an antiperiplanar elimination resulting in ring opening of the aziridine *anti-9* (Scheme 6). The secondary amide group of alkenoate 12 then attacks the ester group leading to γ -lactam 13. The *p*-toluenesulfinyl group of the ring-closed product 13 was subsequently cleaved by attack of the expelled ethoxide anion, resulting in dihydropyrrol-2-one 11.

Repeating the reaction with one equivalent NaH for one hour (Table 2, entry 2), also afforded the 3-amino-1,5-dihydropyrrol-2-one **11** however in a lower yield (45%). Performing the reaction in EtOH for 22 h at reflux temperature in the presence of

Scheme 7 Synthesis of aziridines 14 and 15 and further ring transformation to trans-N-tosylazetidine 16.

three equivalents of K₂CO₃ (entry 3), afforded the 3-amino-1,5dihvdropyrrol-2-one 11 in an excellent yield of 98%. Repeating the reaction in DMSO led to a complex reaction mixture (entry 4), while the use of 2.5 equivalents of NaH in DMSO at 80 °C for two hours (entry 5), resulted in the 3-amino-1,5-dihydropyrrol-2-one 11 in a yield of 56%. When aziridine anti-9 was treated with one equivalent of DBU in toluene for 24 h at room temperature, no reaction was observed. Reaction of aziridine anti-9 with two equivalents of LiClO₄ in acetonitrile at reflux temperature for 24 h, resulted only in a complex reaction mixture. In an additional series of attempts, a microwave (MW) reactor was used for the ring transformation of aziridine anti-9 to trans-\beta-aminoazetidine-2-carboxylate 10, albeit without success. An initial reaction, performed in acetonitrile at 120 °C for 10 min, led to degradation of the starting material anti-9. Lowering reaction times and temperatures resulted in degradation or no reaction, without formation of the desired azetidine 10. In a final attempt, NaI was added to the reaction mixture, but no conversion of the starting material into the envisaged product was achieved.

Subsequently, the *p*-toluenesulfinyl group of *N*-sulfinylaziridine *anti*-6a (Scheme 7) was selectively oxidized with 3-chloroperbenzoic acid (mCPBA), resulting in enantiomerically pure *anti*-*N*-sulfonylaziridine 14 containing a strong electron-withdrawing activating group at the aziridine nitrogen. Based on our previously reported ring transformation of racemic *anti*-*N*- tosylaziridine 15 to racemic anti-N-tosylazetidine 16, it was expected that the targeted ring transformation of aziridine 14 to optically pure azetidine 16 should be straightforward.^{16b} The Ndiphenylmethylene moiety of this anti-N-sulfonylaziridine 14 was subsequently reduced with NaCNBH₃, resulting in the formation of anti-N-sulfonylaziridine 15 in 92% yield. It was found that the anti-N-sulfonylaziridine 15 is an excellent precursor for an easy ring transformation towards trans-3-(N-tosylamino)azetidine-2-carboxylate 16 via simple heating in acetonitrile at 120 °C for 10 min under microwave (MW) conditions. Noteworthy, the latter transformation as reported for the racemic azetidine 16 required heating at 70 °C in acetonitrile for 20 h under conventional heating conditions.^{16b} The enantiomeric excess of trans-3-(N-tosylamino)azetidine-2-carboxylate 16 (ee > 98%) was determined via chiral HPLC involving comparison to a racemic mixture of azetidine 16 (see Supporting Information).

In a series of follow up experiments, in order to extend the potential applicability of the synthesized 3-aminoazetidine-2-carboxylic acid derivative **16** as building block for the synthesis of peptides, azetidine **16** (Scheme 8) was subjected to several deprotection reactions. In an initial reaction, the ester group was hydrolyzed under basic conditions in 2 M NaOH in aq. methanol, resulting in *trans*-3-(*N*-tosylamino)azetidine-2-carboxylic acid **17** in 69% yield after acidic workup with aqueous HCl. Subsequently, the *N*-(diphenylmethyl)amino group of the azetidine **17** was *N*-deprotected by hydrogenolysis in the presence of

Scheme 8 Synthesis of the deprotected azetidines 17, 18 and 19.

Scheme 9 Benzylation and further attempted detosylation of azetidine 16.

 $Pd(OH)_2/C.^{21}$ After precipitation in diethyl ether, the *trans*-3-(*N*-tosylamino)azetidine-2-carboxylic acid **18** was obtained in 92% yield. The hydrogenolysis of the *N*-(diphenylmethyl)amino group could be directly applied on the ethyl ester **16**, affording ethyl 3-(*N*-tosylamino)azetidine-2-carboxylate **19** in 87% yield, also after precipitation from diethyl ether.

Furthermore, some efforts were made to cleave the N-tosyl group from trans-3-(N-tosylamino)azetidine-2-carboxylic ester 16 (Scheme 8), unfortunately without success. In an initial attempt, treatment of azetidine 16 with Mg turnings in MeOH,²² gave no reaction. When azetidine 16 was treated with sodium or lithium naphthalenide in THF at -78 °C or at -20 °C,^{23,24} no reaction occurred and the starting material was totally recovered. Performing the reaction with sodium naphthalenide at room temperature for 30 min led to a complex mixture of unidentified products. The use of phenol and 48% HBr in H₂O,^{18,25} or the use of sodium amalgam and disodium hydrogen phosphate in dry methanol,²⁶ both under reflux conditions gave rise to complex reaction mixtures. Application of conditions reported for the deprotection of tertiary sulfonamides using trimethylsilyl chloride in the presence of sodium iodide,²⁷ failed also to deprotect azetidine 16.

The procedure for the deprotection of tertiary sulfonamides using TMSCl in the presence of NaI is reported as straightforward.²⁷ Thus this strategy was used and azetidine **16** was *N*-benzylated with benzyl bromide in the presence of K_2CO_3 in DMF (Scheme 9).²⁸ Next, the *trans-N*-benzyl-*N*-tosylazetidine **21** was stirred under reflux for 48 h with 1.5 equivalents TMSCl in the presence of 1.5 equivalents NaI, but unfortunately without formation of the *trans-*(3-*N*-benzylamino)-azetidine **22**.

As the synthesis of the racemic *cis*-isomer of azetidine **16** starting from the *syn*-isomer of aziridine **14** was not possible, but racemic *syn*-aziridine could be transformed into a racemic α,β -diamino- γ -butyrolactone,^{16b} a similar ring transformation of *syn-N*-sulfinylaziridine *syn*-**6a** to chiral α,β -diamino- γ -butyrolactones was evaluated (Scheme 10). (2*R*,3*R*)-2,3-diamino-4,4-dimethylbutyrolactone **23** was prepared *via* acid-mediated synthesis in quantitative yield. The reaction required careful optimization and final reaction conditions involved stirring aziridine *syn*-**6a** in 0.5 M HCl in H₂O/EtOAc for 30 min at room temperature (Scheme 10). The optically pure lactone **23** is of interest in further applications towards the synthesis of new β -amino-substituted analogues of *N*-acyl homoserine lactones acting as quorum sensing interfering molecules.²⁹

Similarly, *syn*- γ -chloro- α , β -diamino ester *syn*-**5a** was treated with 5 equivalents of trifluoroacetic acid in acetone/water (2 : 1) for 15 min (Scheme 11). Following basic workup with NH₄OH, the *syn*- γ -chloro- α , β -diamino ester *syn*-**24** was isolated in 83% yield. The fact that the *N*-sulfinyl group is not removed under these conditions is remarkable, as the deprotection of *anti*-

Scheme 10 Transformation of *syn-N*-sulfinylaziridine *syn*-6a into (2*R*,3*R*)-2,3-diamino-butyrolactone 23.

aziridine *anti*-6a under the same reaction conditions led to unprotected aziridine 8 (Scheme 4).

In conclusion, it was demonstrated that new chiral *syn*- and *anti*- γ -chloro- α , β -diamino esters are formed in high yield and in excellent diastereomeric ratios *via* stereoselective Mannich-type reactions of *N*-(diphenylmethylene) glycine esters across a chiral α -chloro-*N*-*p*-toluenesulfinylimine. The base used for the deprotonation of the glycine ester had a dramatic and unexpected influence on the diastereoselectivity of the Mannich-type reaction, with LDA leading selectively to *anti*-diastereomers, whereas the use of LiHMDS leads to *syn*-diastereomers. The γ -chloro- α , β -diamino esters proved to be versatile building blocks in asymmetric synthesis as demonstrated by several selective transformations to new *syn*- and *anti*- β , γ -aziridino- α -amino esters, *trans*-3-aminoazetidine-2-carboxylates and an α , β -diamino- γ -butyrolactone.

General methods

Flame-dried glassware was used for all non-aqueous reactions. Commercially available solvents and reagents were purchased from common chemical suppliers and used without further

Scheme 11 Deprotection of $syn-\gamma$ -chloro- α,β -diamino ester syn-5a with TFA.

purification, unless stated otherwise. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were freshly distilled under a nitrogen atmosphere from sodium/benzophenone ketyl. Petroleum ether refers to the 40–60 °C boiling fraction. ¹H NMR (300 MHz), ¹³C NMR (75 MHz) spectra were recorded in deuterated solvents with tetramethylsilane (TMS, $\delta = 0$ ppm) as internal standard unless specified otherwise. Mass spectra were recorded using a direct inlet system (ESI, 4000 V). IR spectra were obtained from samples in neat form with an ATR (Attenuated Total Reflectance) accessory. Elementary analyses were performed using a CHNS/O elementary analyzer. HRMS analysis was performed using an Agilent 1100 series HPLC coupled to an Agilent 6220 TOF-Mass Spectrometer equipped with ESI/APCI-multimode source. Melting points of crystalline compounds were determined in open-end capillary tubes using a hot stage apparatus and were not corrected. The purification of the reaction mixtures was performed by column chromatography with silica gel (particle size 0.035-0.070 mm, pore diameter ca. 6 nm). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 F_{254} , using UV and KMnO₄ as a visualizing agent. (S_S) -p-Toluenesulfinamide is commercially available (>98% ee).

Experimental section

Synthesis of (S_S) - α -chloro-N-p-toluenesulfinyl isobutyraldimine 3

To a flame dried round-bottomed flask charged with α -chloroisobutyraldehyde **1** (3.43 g, 32.21 mmol) in dry CH₂Cl₂ (100 mL) was added Ti(OEt)₄ (4 equiv, 29.40 g, 128.85 mmol) and (*S_S*)-*p*toluenesulfinamide **2** (5.00 g, 32.21 mmol) under nitrogen atmosphere. The reaction mixture was stirred for 18 h at room temperature. After completion, the reaction mixture was poured into water (100 mL) while rapidly stirring. The suspension was filtered over Celite[®] and the solids were washed with CH₂Cl₂ (2 × 20 mL). Subsequently, the filtrate was extracted with CH₂Cl₂ (3 × 30 mL) and the combined organic phases were dried (MgSO₄), filtered and evaporated *in vacuo*. The crude product was purified by column chromatography to yield 7.25 g (29.74 mmol) of pure (*S_S*)- α -chloro-*N*-*p*-toluenesulfinyl isobutyraldimine **3**.

(S_S) - α -chloro-N-p-toluenesulfinyl isobutyraldimine 3

*R*_f 0.25 (petroleum ether/EtOAc: 5/1). White crystals, yield 92%. Mp 54.6 ± 1.0 °C. IR (cm⁻¹): v_{max} 816, 1086, 1071, 1621. ¹H NMR (300 MHz, CDCl₃): δ 1.70 (3H, s), 1.77 (3H, s), 2.41 (3H, s), 7.31 (2H, d, *J* = 8.0 Hz), 7.55 (2H, d, *J* = 8.0 Hz), 8.17 (1H, s). ¹³C NMR (75 MHz, CDCl₃): δ 21.5, 29.0, 29.1, 66.6, 124.7 (2C), 129.9 (2C), 141.0, 142.0, 165.9. MS (ES, pos. mode) *m*/*z* (%): 288/290 (100), 244/246 (M + H⁺, 80). HRMS (ES) calcd for C₁₁H₁₄ClNOS: 244.0557 MH⁺; found: 244.0548 (<1%), 219.1737 (100%).

Synthesis of (*S_S*,2*S*,3*R*)-alkyl 2-(diphenylmethyleneamino)-4chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoates *anti*-5

The synthesis of $(S_s, 2S, 3R)$ -alkyl 2-(diphenylmethyleneamino)-4-chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate *anti*-5a is representative. To a flame dried round-bottomed flask with freshly distilled diisopropylamine (1.1 equiv, 6.76 mmol, 0.67 g) in dry THF (15 mL) was added n-BuLi (1.21 equiv, 7.43 mmol, 2.5 M in hexane, 2.97 mL) under nitrogen atmosphere. The reaction mixture was stirred for 5 min at 0 °C and was subsequently cooled to -78 °C. After 5 min, a solution of N-(diphenylmethylene) glycine ethyl ester 4a (1.1 equiv, 6.76 mmol, 1.81 g) in dry THF (5 mL) was slowly added and the resulting solution was stirred for 1 h at -78 °C. After deprotonation, the reaction mixture was cooled to -90 °C and a solution of (S_S) - α -chloro-Np-toluenesulfinyl isobutyraldimine 3 (1.0 equiv, 6.14 mmol, 1.50 g), in dry THF (20 mL) was added dropwise and the reaction mixture was stirred at -90 °C for 5 min. To the reaction mixture was added a saturated solution of NH₄Cl (40 mL) while stirring was continued at -90 °C for 2 min. The reaction mixture was brought to room temperature, followed by an extraction with EtOAc (3×40 mL). The combined organic phases were dried (MgSO₄), filtered and evaporated in vacuo. The crude product was purified by column chromatography to yield 2.48 g (4.85 mmol) of $(S_S, 2S, 3R)$ -ethyl 2-(diphenylmethyleneamino)-4chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate anti-5a as a 89:11 mixture with syn-adduct syn-5a.

(*S_S*,2*S*,3*R*)-Ethyl 2-(diphenylmethyleneamino)-4-chloro-4methyl-3-(*p*-toluenesulfinylamino)pentanoate *anti*-5a

*R*_f 0.23 (petroleum ether/EtOAc: 3/1). White crystals, yield 79%, dr 89 : 11. Mp 52.7 ± 0.3 °C. IR (cm⁻¹): *v*_{max} 1624, 1731, 3280. ¹H NMR (300 MHz, CDCl₃): δ 1.19 (3H, t, *J* = 7.15 Hz), 1.62 (3H, s), 1.64 (3H, s), 2.37 (3H, s), 3.90 (1H, d × d, *J* = 8.81 Hz, 3.30 Hz), 3.99–4.16 (2H, m), 4.58 (1H, d, *J* = 3.30 Hz), 5.47 (1H, d, *J* = 8.81 Hz), 7.14–7.77 (14H, m). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 21.5, 30.6, 30.8, 61.5, 66.4, 67.2, 73.0, 125.6 (2C), 127.8 (2C), 128.2 (2C), 128.7 (2C), 128.9, 129.4 (2C), 129.6 (2C), 130.8, 136.0, 139.3, 141.3, 142.9, 170.7, 172.6. MS (ES, pos. mode) *m*/*z* (%): 511/513 (M + H⁺, 100). HRMS (ES) calcd for C₂₈H₃₁ClN₂O₃S: 511.1817 MH⁺; found: 511.1825.

(*S_S*,2*S*,3*R*)-*tert*-Butyl 2-(diphenylmethyleneamino)-4-chloro-4methyl-3-(*p*-toluenesulfinylamino)pentanoate *anti*-5c

 $R_{\rm f}$ 0.29 (petroleum ether/EtOAc: 3/1). White crystals, yield 52%, dr 81 : 19. Mp 57.2 \pm 0.5 °C. IR (cm⁻¹): $v_{\rm max}$ 1624, 1725, 3284. ¹H NMR (300 MHz, CDCl₃): δ 1.35 (9H, s), 1.64 (3H, s), 1.69 (3H, s), 2.37 (3H, s), 3.82 (1H, d \times d, J= 8.53 Hz, 2.5 Hz), 4.44 (1H, d, J= 2.20 Hz), 5.62 (1H, d, J= 8.81 Hz), 7.15–7.78 (14H, m). ¹³C NMR (75 MHz, CDCl₃): δ 21.3, 27.8, 30.4, 30.8, 66.6, 67,3, 73.0, 82.2, 125.7 (2C), 127.9 (2C), 128.0 (2C), 128.5 (2C), 128.7, 129.3 (2C), 129.4 (2C), 130.5, 136.0, 139.4, 141.0, 142.5, 169.5, 172.3. MS (ES, pos. mode) m/z (%): 539/541 (M + H⁺, 100). HRMS (ES) calcd for C₃₀H₃₅ClN₂O₃S: 539.2130 MH⁺; found: 539.2114.

Synthesis of (*S_S*,2*R*,3*R*)-alkyl 2-(diphenylmethyleneamino)-4chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoates *syn*-5

The synthesis of $(S_s, 2R, 3R)$ -ethyl 2-(diphenylmethyleneamino)-4-chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate *syn*-5a is representative. A solution of N-(diphenylmethylene) glycine ethyl ester 4a (1.1 equiv, 6.76 mmol, 1.81 g) in THF (20 mL) was cooled to -78 °C under nitrogen atmosphere. A 1.0 M solution of LiHMDS (1.1 equiv, 6.76 mL, 6.76 mmol) in THF was slowly added and the resulting solution was stirred for 1 h at -78 °C. After deprotonation, a solution of (S_S) - α -chloro-N-ptoluenesulfinyl isobutyraldimine 3 (1.0 equiv, 6.14 mmol, 1.50 g) in THF (20 mL) was added dropwise and the reaction mixture was stirred at -78 °C for 15 min. To the reaction mixture was added a saturated solution of NH₄Cl (40 mL) while stirring at -78 °C for 2 min. The reaction mixture was brought to room temperature followed by an extraction with EtOAc (3 \times 100 mL). The combined organic phases were dried (MgSO₄), filtered and evaporated in vacuo. The crude product was purified by recrystallization from diethyl ether to yield 2.76 g (5.40 mmol) of pure $(S_S, 2R, 3R)$ -ethyl 2-(diphenylmethyleneamino)-4-chloro-4-methyl-3-(p-toluenesulfinylamino)pentanoate syn-5a.

(*S_S*,2*R*,3*R*)-Ethyl 2-(diphenylmethyleneamino)-4-chloro-4methyl-3-(*p*-toluenesulfinylamino)pentanoate *syn*-5a

*R*_f 0.21 (petroleum ether/EtOAc: 3/1). White crystals, yield 88%. [*α*]_D +193.8 (*c* 0.6, CHCl₃). Mp 144.2 ± 1.0 °C. IR (cm⁻¹): *v*_{max} 815, 1070, 1088, 1259, 1621, 1721, 3312. ¹H NMR (300 MHz, CDCl₃): δ 1.30 (3H, t, *J* = 7.15 Hz), 1.51 (3H, s), 1.63 (3H, s), 2.45 (3H, s), 4.21–4.38 (3H, m), 4.66 (1H, d, *J* = 1.10 Hz), 5.83 (1H, d, *J* = 8.26 Hz), 7.13–7.19 (2H, m), 7.26–7.46 (8H, m), 7.51–7.54 (2H, m), 7.74 (2H, d, *J* = 8.26 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 21.4, 29.0, 30.6, 62.2, 65.6, 67,1, 72.6, 125.7 (2C), 127.1 (2C), 128.1 (2C), 128.6 (2C), 128.9 (2C), 129.0, 129.6 (2C), 130.7, 136.4, 138.8, 141.3, 143.6, 169.6, 171.7. MS (ES, pos. mode) *m*/*z* (%): 511/513 (M + H⁺, 100). HRMS (ES) calcd for C₂₈H₃₁ClN₂O₃S: 511.1817 MH⁺; found: 511.1838.

(*S_S*,2*R*,3*R*)-Methyl 2-(diphenylmethyleneamino)-4-chloro-4methyl-3-(*p*-toluenesulfinylamino)pentanoate *syn*-5b

*R*_f 0.08 (petroleum ether/EtOAc: 4/1). White crystals, yield 86%. [*α*]_D +224.1 (*c* 1.6, CHCl₃). Mp 136.4 ± 0.5 °C. IR (cm⁻¹): *v*_{max} 1071, 1092, 1261, 1727, 3319. ¹H NMR (300 MHz, CDCl₃): δ 1.51 (3H, s), 1.63 (3H, s), 2.45 (3H, s), 3.83 (3H, s), 4.30 (1H, d × d, *J* = 8.53 Hz, 1.38 Hz), 4.70 (1H, d, *J* = 1.10 Hz), 5.83 (1H, d, *J* = 8.81 Hz), 7.13–7.16 (2H, m), 7.28–7.45 (8H, m), 7.50–7.53 (2H, m), 7.74 (2H, d, *J* = 8.26 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 21.4, 29.0, 30.6, 53.1, 65.6, 67,2, 72.4, 125.7 (2C), 127.0 (2C), 128.1 (2C), 128.7 (2C), 128.9 (2C), 129.0, 129.6 (2C), 130.8, 136.4, 138.7, 141.3, 143.5, 170.2, 171.8. MS (ES, pos. mode) *m/z* (%): 497/499 (M + H⁺, 100). HRMS (ES) calcd for C₂₇H₂₉ClN₂O₃S: 497.1660 MH⁺; found: 497.1658.

Synthesis of (*S_s*,2'*R*)-alkyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetates 6

The synthesis of $(S_s, 2S, 2'R)$ -ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate **anti-6a** is representative. To a solution of $(S_s, 2S, 3R)$ -ethyl 2-(diphenylmethyleneamino)-4-chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate **anti-5a** (1.50 g, 2.93 mmol) in acetone (35 mL) was added K₂CO₃ (3.0 equiv, 8.80 mmol, 1.22 g) at room temperature. The reaction mixture was allowed to stir for 24 h at reflux temperature. After 24 h, the K₂CO₃ was filtered off and the solvent was evaporated *in vacuo*. The resulting oil was redissolved in EtOAc (40 mL) and washed with water (2 × 15 mL). The organic phase was dried (MgSO₄), filtered and evaporated *in vacuo*. The crude product was purified by column chromatography to yield 1.02 g (2.14 mmol) of ($S_s, 2S, 2'R$)-ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate **anti-6a**.

(*S_S*,2*S*,2'*R*)-Ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate *anti*-6a

*R*_f 0.25 (petroleum ether/EtOAc: 3/1). White crystals, yield 73%. [*α*]_D −24.1 (*c* 0.4, CHCl₃). Mp 103.8 ± 0.2 °C. IR (cm⁻¹): *v*_{max} 1613, 1732. ¹H NMR (300 MHz, CDCl₃): δ 1.01 (3H, t, *J* = 7.15 Hz), 1.06 (3H, s), 1.60 (3H, s), 2.36 (3H, s), 3.50 (1H, d, *J* = 8.26 Hz), 3.53–3.66 (2H, m), 3.84 (1H, d, *J* = 8.81 Hz), 7.02–7.05 (2H, m), 7.22 (2H, d, *J* = 8.26 Hz), 7.30–7.41 (6H, m), 7.55 (2H, d, *J* = 8.26 Hz), 7.59–7.63 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 13.8, 20.9, 21.3, 21.7, 42.0, 44.6, 60.8, 65.4, 125.6 (2C), 128.0 (2C), 128.3 (2C), 128.9, 129.0 (2C), 129.2 (2C), 130.6, 135.8, 139.4, 140.8, 143.1, 170.1, 170.9. MS (ES, pos. mode) *m/z* (%): 475 (M + H⁺, 100). Anal. calcd for C₂₈H₃₀N₂O₃S: C 70.86; H 6.37; N 5.90; found: C 71.00; H 6.21; N 5.85.

(*S_S*,2*S*,2'*R*)-*tert*-Butyl 2-(diphenylmethyleneamino)-2-[3,3dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate *anti*-6c

 $R_{\rm f}$ 0.38 (petroleum ether/EtOAc: 3/1). White crystals, yield 79%, dr 81 : 19. Mp 92.2 \pm 0.1 °C. IR (cm⁻¹): $v_{\rm max}$ 1149, 1619, 1741. ¹H NMR (300 MHz, CDCl₃): δ 1.23 (3H, s), 1.25 (9H, s), 1.60 (3H, s), 2.33 (3H, s), 3.41 (1H, d, J = 8.26 Hz), 3.86 (1H, d, J = 7.71 Hz), 6.91–7.61 (14H, m). ¹³C NMR (75 MHz, CDCl₃): δ 21.25, 21.28, 21.8, 27.8 (3C), 42.2, 44.5, 65.5, 81.5, 125.9 (2C), 127.9 (2C), 128.1 (4C), 128.7, 128.9 (2C), 129.2 (2C), 130.3, 135.8, 139.7, 140.7, 143.3, 168.9, 170.1. MS (ES, pos. mode) m/z (%): 503 (M + H⁺, 100). Anal. calcd for C₃₀H₃₄N₂O₃S: C 71.68; H 6.82; N 5.57; found: C 72.05; H 6.79; N 5.57.

(*S_S*,2*R*,2'*R*)-Ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate *syn*-6a

 $R_{\rm f}$ 0.23 (petroleum ether/EtOAc: 3/1). Colourless oil, yield 99%. $[\alpha]_{\rm D}$ +117.8 (c 0.7, CHCl_3). IR (cm⁻¹): $v_{\rm max}$ 695, 1072, 1092, 1624, 1735. ¹H NMR (300 MHz, CDCl_3): δ 1.07 (3H, s), 1.24 (3H, t, J = 6.9 Hz), 1.60 (3H, s), 1.95 (3H, s), 3.53 (1H, d, J = 9.36 Hz), 3.77 (1H, d, J = 9.36 Hz), 4.07–4.22 (2H, m), 6.54–6.72 (4H, m), 7.25–7.33 (5H, m), 7.39–7.50 (5H, m). ¹³C NMR (75 MHz, CDCl_3): δ 14.1, 20.4, 21.2, 22.6, 42.2, 45.4, 61.2, 64.4, 124.6 (2C), 127.7 (2C), 128.0 (4C), 128.3, 129.1 (2C), 129.2 (2C), 130.2, 135.6, 138.9, 141.0, 143.2, 169.8,

170.5. MS (ES, pos. mode) m/z (%): 475 (M + H⁺, 100). HRMS (ES) calcd for C₂₈H₃₀N₂O₃S: 475.2050 MH⁺; found: 475.2071.

(*S_s*,2*R*,2'*R*)-Methyl 2-(diphenylmethyleneamino)-2-[3,3dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate *syn*-6b

*R*_f 0.26 (petroleum ether/EtOAc: 3/1). White crystals, yield 83%. [*α*]_D +178.9 (*c* 1.6, CHCl₃). Mp 108.0 ± 0.3 °C. IR (cm⁻¹): *v*_{max} 698, 1070, 1091, 1622, 1741. ¹H NMR (300 MHz, CDCl₃): δ 1.07 (3H, s), 1.60 (3H, s), 1.95 (3H, s), 3.53 (1H, d, *J* = 9.1 Hz), 3.70 (3H, s), 3.80 (1H, d, *J* = 9.8 Hz), 6.54–6.86 (4H, m), 7.25–7.35 (5H, m), 7.39–7.50 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 20.4, 21.2, 22.5, 42.2, 45.4, 52.4, 64.3, 124.5 (2C), 127.7 (2C), 128.0 (4C), 128.3, 129.1 (2C), 129.2 (2C), 130.3, 135.5, 138.8, 141.0, 143.2, 170.4, 170.6. MS (ES, pos. mode) *m/z* (%): 461 (M + H⁺, 100). HRMS (ES) calcd for C₂₇H₂₈N₂O₃S: 461.1893 MH⁺; found: 461.1894.

Synthesis of (2*S*,2'*R*)-Ethyl amino-(3,3-dimethylaziridin-2-yl)acetate 8

To a solution of $(S_S, 2S, 2'R)$ -ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(p-toluenesulfinyl)aziridin-2-yl]acetate anti-6a (0.50 g, 1.05 mmol) in acetone/H₂O: 2/1 (30 mL) was added dropwise trifluoroacetic acid (5 equiv, 5.27 mmol, 0.41 mL) at room temperature. The reaction mixture was stirred for 15 min at room temperature and subsequently quenched with NH₄OH in H_2O until pH = 10 and concentrated *in vacuo*. The residue was redissolved in water (10 mL) and NH₄OH was added until pH = 10. The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phases were dried (MgSO₄), filtered and evaporated in vacuo. The crude product was purified by rapid filtration over a short silica column with petroleum ether and the silica was subsequently extracted with CH₂Cl₂/MeOH: 4/1. The latter phase was filtered and evaporated in vacuo to yield 0.14 g (0.82 mmol) of (2S,2'R)-ethyl amino-(3,3-dimethylaziridin-2-yl)acetate 8.

(2S,2'R)-Ethyl amino-(3,3-dimethylaziridin-2-yl)acetate 8

Yellowish oil, yield 78%. $[\alpha]_D$ + 131.5 (*c* 0.9, CHCl₃). IR (cm⁻¹): v_{max} 831, 1027, 1187, 1382, 1729, 2957. ¹H NMR (300 MHz, CDCl₃): δ 1.21 (3H, s), 1.23 (3H, t, J = 7.15 Hz), 1.25 (3H, s), 1.39 (3H, br s), 1.91 (1H, d, J = 8.81 Hz), 3.08 (1H, d, J = 8.81 Hz), 4.16 (2H, q, J = 7.15 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.3, 19.7, 27.2, 35.6, 45.8, 55.6, 61.2, 174.6. MS (ES, pos. mode) m/z (%): 173 (M + H⁺, 100). HRMS (ES) calcd for C₈H₁₆N₂O₂: 173.1285 MH⁺; found: 173.1282.

Synthesis of (*S_s*,2*S*,2'*R*)-ethyl 2-(diphenylmethylamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate 9

To a solution of $(S_5,2S,2'R)$ -ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate **anti-6a** (0.37 g, 0.78 mmol) in methanol (4 mL) was added dropwise acetic acid (1 equiv, 0.78 mmol, 0.05 g) at room temperature. Subsequently, NaCNBH₃ (2 equiv, 1.56 mmol, 0.10 g) was added in portions during 5 min. The reaction mixture was allowed to stir for 6 h at room temperature. After completion, the reaction was quenched with H₂O (100 equiv, 78 mmol, 1.4 mL) and concentrated *in vacuo*. The resulting precipitate was redissolved in EtOAc (4 mL) and washed with H₂O (3×2 mL). The organic phase was dried (MgSO₄), filtered and evaporated *in vacuo*. The crude product was purified by column chromatography to yield 0.25 g (0.53 mmol) of ($S_{S,2}S,2'R$)-ethyl 2-(diphenylmethylamino)-2-[3,3-dimethyl-1-(p-toluenesulfinyl)-aziridin-2-yl]acetate **9**.

(*S_S*,2*S*,2'*R*)-Ethyl 2-(diphenylmethylamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate 9

*R*_f 0.28 (hexane/Et₂O: 10/1). White crystals, yield 68%. [*α*]_D +80.6 (*c* 1.9, CHCl₃). Mp 99.8 ± 0.5 °C. IR (cm⁻¹): *v*_{max} 1742, 3287. ¹H NMR (300 MHz, CDCl₃): δ 0.99 (3H, t, *J* = 7.15 Hz), 1.21 (3H, s), 1.61 (3H, s), 2.22 (1H, br s), 2.37 (3H, s), 2.88 (1H, d, *J* = 9.36 Hz), 2.91 (1H, d, *J* = 8.81 Hz), 3.26 (1H, d × q, *J* = 11.01 Hz, 7.15 Hz), 3.61 (1H, d × q, *J* = 10.46 Hz, 7.15 Hz), 4.63 (1H, s), 7.16–7.33 (12H, m), 7.50 (2H, d, *J* = 8.26 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 20.7, 21.3, 21.8, 41.1, 45.3, 58.5, 60.4, 65.2, 125.3 (2C), 127.0 (2C), 127.3, 127.4, 127.7 (2C), 128.4 (2C), 128.5 (2C), 129.2 (2C), 140.9, 142.1, 142.8, 143.5, 172.7. MS (ES, pos. mode) *m/z* (%): 477 (M + H⁺, 100). HRMS (ES) calcd for C₂₈H₃₂N₂O₃S: 477.2206 MH⁺; found: 477.2210.

Synthesis of 3-(diphenylmethylamino)-5,5-dimethyl-1,5dihydropyrrol-2-one 11

To a solution of $(S_S, 2S, 2'R)$ -ethyl 2-(diphenylmethylamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate **9** (0.10 g, 0.21 mmol) in ethanol (2 mL) was added K₂CO₃ (3.0 equiv, 0.63 mmol, 0.09 g) at room temperature. The reaction mixture was stirred for 22 h at reflux. Subsequently, the K₂CO₃ was filtered off and the solvent was evaporated *in vacuo*. Precipitation in diethyl ether afforded 0.06 g (0.20 mmol) of 3-(diphenylmethylamino)-5,5-dimethyl-1,5-dihydropyrrol-2-one **11**.

3-(Diphenylmethylamino)-5,5-dimethyl-1,5-dihydropyrrol-2-one 11

White crystals, yield 98%. Mp 213.2 \pm 1.0 °C. IR (cm⁻¹): v_{max} 704, 1344, 1650, 1697, 3181, 3359. ¹H NMR (300 MHz, CDCl₃): δ 1.24 (6H, s), 4.52 (1H, br d, J = 3.6 Hz), 4.91 (1H, d, J = 1.65 Hz), 5.25 (1H, d, J = 3.6 Hz), 6.21 (1H, br s), 7.21–7.34 (10H, m). ¹³C NMR (75 MHz, CDCl₃): δ 27.6, 57.5, 63.7, 115.2, 127.3 (4C), 127.4 (2C), 128.6 (4C), 136.6, 141.8 (2C), 169.0. MS (ES, pos. mode) m/z (%): 293 (M + H⁺, 100). HRMS (ES) calcd for C₁₉H₂₀N₂O: 293.1648 MH⁺; found: 293.1651.

Synthesis of (2*S*,2'*R*)-ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfonyl)aziridin-2-yl]acetate 14

To a solution of $(S_S, 2S, 2'R)$ -ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate **anti-6a** (1.10 g, 2.32 mmol) in dry CH₂Cl₂ (40 mL) was added mCPBA Downloaded by State University of New York at Albany on 01 March 2012 Published on 09 December 2011 on http://pubs.rsc.org | doi:10.1039/C2OB06637H (1.1 equiv, 2.55 mmol, 0.44 g) at room temperature. The reaction mixture was allowed to stir for 2 min at room temperature and was subsequently quenched with a saturated solution of NaHCO₃ (20 mL). The organic phase was dried (MgSO₄), filtered and evaporated *in vacuo*. The crude product was purified by recrystallization from EtOAc to yield 1.02 g (2.09 mmol) of (2*S*,2'*R*)-ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfonyl)aziridin-2-yl]acetate **14**. All spectroscopic data were in good agreement with reported data of the racemate of **14**. ^{16b} White crystals, yield 90%. [α]_D –137.1 (*c* 0.4, CHCl₃). Mp 128.4 ± 0.5 °C.

Synthesis of (2*S*,2'*R*)-ethyl 2-(diphenylmethylamino)-2-[3,3dimethyl-1-(*p*-toluenesulfonyl)aziridin-2-yl]acetate 15

To a solution of (2S, 2'R)-ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(p-toluenesulfonyl)aziridin-2-yl]acetate 14 (1.33 g, 2.71 mmol) in methanol (15 mL) was added dropwise acetic acid (1 equiv, 2.71 mmol, 0.16 g) at room temperature. Subsequently, NaCNBH₃ (2 equiv, 5.42 mmol, 0.34 g) was added in portions during 5 min. The reaction mixture was stirred for 6 h at room temperature. After completion, the reaction was quenched with H₂O (100 equiv, 271 mmol, 4.9 mL) and concentrated in vacuo. The resulting precipitate was redissolved in EtOAc (15 mL) and washed with water (3 \times 10 mL). The organic phase was dried (MgSO₄), filtered and evaporated in vacuo. The crude product was purified by recrystallization from EtOAc/Et₂O: 1/1 to yield 1.23 g (2.50 mmol) of (2S,2'R)-ethyl 2-(diphenylmethylamino)-2-[3,3-dimethyl-1-(p-toluenesulfonyl)aziridin-2-yl]acetate 15. All spectroscopic data were in good agreement with reported data of the racemate of 15.16b White crystals, yield 92%. $[\alpha]_D$ -45.3 (c 0.9, CHCl₃). Mp 95.8 ± 1.0 °C.

Synthesis of (2*S*,3*R*)-ethyl 1-diphenylmethyl-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylate 16

In a 10 mL microwave vial containing (2S,2'R)-ethyl 2-(diphenylmethylamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfonyl)aziridin-2-yl]acetate **15** (0.40 g, 0.81 mmol) was added acetonitrile (3 mL). The reaction mixture was stirred vigorously at 120 °C for 10 min. Subsequently, the reaction mixture was concentrated *in vacuo* and the residue was recrystallized from Et₂O to afford 0.25 g (0.51 mmol) of (2S,3R)-ethyl 1-diphenylmethyl-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylate **16**. All spectroscopic data were in good agreement with reported data of the racemate of **16** (ee > 98%).^{16b} White crystals, yield 63%. [α]_D+15.6 (*c* 0.2, CHCl₃). Mp 188.1 ± 0.5 °C.

Synthesis of (2*S*,3*R*)-1-diphenylmethyl-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylic acid 17

(2S,3R)-Ethyl 1-diphenylmethyl-4,4-dimethyl-3-(p-toluenesulfonylamino)azetidine-2-carboxylate **16** (0.37 g, 0.80 mmol) was dissolved in 2 M NaOH/MeOH: 1/1 (40 mL). The reaction mixture was stirred for 24 h at reflux temperature and subsequently washed with EtOAc (1 × 20 mL). The aqueous phase was brought to pH = 4 with 2 M HCl and extracted with EtOAc $(3 \times 20 \text{ mL})$. The combined organic phases were dried (MgSO₄), filtered and evaporated *in vacuo*. Recrystallization from diethyl ether/hexane: 1/1 afforded 0.24 g (0.52 mmol) of (2S,3R)-1-diphenylmethyl-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylic acid **17**.

(2*S*,3*R*)-1-Diphenylmethyl-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylic acid 17

White crystals, yield 69%. $[\alpha]_D$ +61.0 (*c* 0.5, MeOH). Mp 121.0 \pm 0.2 °C. IR (cm⁻¹): v_{max} 705, 1092, 1153, 1321, 1454, 1643, 1714, 3062. ¹H NMR (300 MHz, CDCl₃): δ 1.19 (3H, s), 1.24 (3H, s), 2.36 (3H, s), 3.65–3.73 (2H, m), 4.88 (1H, s), 6.33 (2H, br s), 7.14–7.36 (10H, m), 7.53 (2H, d, J = 7.15 Hz), 7.70 (2H, d, J = 7.71 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 16.5, 21.6, 29.7, 56.0, 66.7, 69.3, 70.3, 127.0 (2C), 127.7 (2C), 128.0, 128.6 (3C), 128.8 (2C), 129.1 (2C), 129.9, 136.8, 137.4, 140.2, 143.9, 170.7. MS (ES, pos. mode) m/z (%): 465 (M + H⁺, 100). HRMS (ES) calcd for C₂₆H₂₈N₂O₄S: 465.1843 MH⁺; found: 465.1848.

Synthesis of (2*S*,3*R*)-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylic acid derivatives 18 & 19

The synthesis of (2S,3R)-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylic acid **18** is representative. To a solution of (2S,3R)-1-diphenylmethyl-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylic acid **17** (0.060 g, 0.13 mmol) in methanol (5 mL) was added Pd(OH)₂/C (30% mass fraction, 0.018 g) at room temperature. The mixture was stirred for 64 h at room temperature under H₂-atmosphere (3 bar) and subsequently filtered through a short pad of Celite[®]. The Celite[®] pad was washed exhaustively with CH₂Cl₂ and the collected organic fractions were evaporated *in vacuo*. Precipitation in diethyl ether afforded 0.035 g (0.12 mmol) of (2S,3R)-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylic acid **18**.

(2*S*,3*R*)-4,4-Dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2carboxylic acid 18

White crystals, yield 92%. $[\alpha]_{\rm D}$ +66.9 (*c* 0.4, MeOH). Mp 171.0 ± 1.0 °C. IR (cm⁻¹): $v_{\rm max}$ 665, 1094, 1159, 1326, 1620, 3063. ¹H NMR (300 MHz, CD₃OD): δ 1.47 (6H, s), 2.42 (3H, s), 3.87 (1H, d, J = 8.0 Hz), 4.27 (1H, d, J = 8.0 Hz), 7.38 (2H, d, J = 7.71 Hz), 7.76 (2H, d, J = 7.71 Hz). ¹³C NMR (75 MHz, CD₃OD): δ 21.3, 21.5, 26.5, 59.4, 60.4, 69.8, 128.2 (2C), 130.9 (2C), 138.9, 145.2, 171.4 (tentative assignment). MS (ES, pos. mode) m/z (%): 299 (M + H⁺, 100). HRMS (ES) calcd for C₁₃H₁₈N₂O₄S: 299.1060 MH⁺; found: 299.1066.

(2*S*,3*R*)-Ethyl 4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylate 19

White crystals, yield 87%. $[\alpha]_D$ +54.2 (*c* 0.9, MeOH). Mp 183.6 ± 1.5 °C. IR (cm⁻¹): v_{max} 664, 907, 1095, 1167, 1228, 1338, 1732, 2771. ¹H NMR (300 MHz, CDCl₃): δ 1.10 (3H, t, *J* = 6.9 Hz), 1.65 (3H, s), 1.68 (3H, s), 1.65–1.68 (1H, br s), 2.42 (3H, s), 3.99–4.13 (3H, m), 5.36 (1H, d, *J* = 7.71 Hz), 7.29 (2H, d,

J = 8.0 Hz), 7.80 (2H, d, J = 8.0 Hz), 8.16 (1H, d, J = 8.81 Hz). ¹³C NMR (75 MHz, CD₃OD): δ 14.2, 20.8, 21.5, 26.0, 57.9, 59.1, 64.0, 72.0, 128.2 (2C), 131.0 (2C), 139.2, 145.4, 167.5. MS (ES, pos. mode) m/z (%): 327 (M + H⁺, 100). HRMS (ES) calcd for C₁₅H₂₂N₂O₄S: 327.1373 MH⁺; found: 327.1379.

Synthesis of (2*S*,3*R*)-ethyl 1-diphenylmethyl-4,4-dimethyl-3-[benzyl-(*p*-toluenesulfonyl)amino]azetidine-2-carboxylate 21

To a solution of $(2S_3R)$ -ethyl 1-diphenylmethyl-4,4-dimethyl-3-(*p*-toluenesulfonylamino)azetidine-2-carboxylate **16** (0.22 g, 0.45 mmol) in DMF (4 mL) was added K₂CO₃ (3 equiv, 1.35 mmol, 0.19 g) at room temperature. Subsequently, benzyl bromide (1.4 equiv, 0.63 mmol, 0.11 g) was added dropwise and the reaction mixture was stirred for 3.5 h at room temperature. The reaction mixture was poured in diethyl ether (5 mL) and washed with NH₄Cl in H₂O (2 mL) and brine (3 × 2 mL). The organic phase was dried (MgSO₄), filtered and evaporated *in vacuo*. The crude product was purified by column chromatography to yield 0.22 g (0.38 mmol) of (2S_3R)-ethyl 1-diphenylmethyl-4,4-dimethyl-3-[benzyl-(*p*-toluenesulfonyl)amino]azetidine-2-carboxylate **21**.

(2*S*,3*R*)-Ethyl 1-diphenylmethyl-4,4-dimethyl-3-[benzyl-(*p*-toluenesulfonyl)amino]azetidine-2-carboxylate 21

*R*_f 0.18 (petroleum ether/EtOAc: 5/1). White crystals, yield 85%. $[\alpha]_D$ +54.0 (*c* 0.2, CHCl₃). Mp 165.5 ± 0.5 °C. IR (cm⁻¹): v_{max} 671, 695, 706, 1157, 1216, 1332, 1720. ¹H NMR (300 MHz, CDCl₃): δ 0.81 (3H, t, *J* = 7.15 Hz), 0.93 (3H, s), 1.18 (3H, s), 2.39 (3H, s), 3.38–3.49 (1H, m), 3.54–3.65 (1H, m), 3.74 (1H, d, *J* = 7.71 Hz), 3.90 (1H, d, *J* = 16.2 Hz), 3.93 (1H, d, *J* = 7.71 Hz), 4.40 (1H, s), 4.64 (1H, d, *J* = 16.2 Hz), 7.06–7.37 (15H, m), 7.49 (2H, d, *J* = 7.15 Hz), 7.64 (2H, d, *J* = 8.26 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 13.6, 17.1, 21.5, 29.6, 51.4, 60.4, 62.0, 63.6, 68.6, 69.9, 127.2, 127.4, 127.5 (2C), 127.7, 128.0 (2C), 128.1 (4C), 128.3 (2C), 128.4 (2C), 128.9 (2C), 129.7 (2C), 135.5, 137.7, 140.7, 142.8, 143.6, 171.4. MS (ES, pos. mode) *m/z* (%): 583 (M + H⁺, 100). HRMS (ES) calcd for C₃₅H₃₈N₂O₄S: 583.2625 MH⁺; found: 583.2620.

Synthesis of (R,R)-2,3-diamino-4,4-dimethylbutyrolactone dihydrochloride 23

 $(S_s,2R,2'R)$ -ethyl 2-(diphenylmethyleneamino)-2-[3,3-dimethyl-1-(*p*-toluenesulfinyl)aziridin-2-yl]acetate **syn-6a** (0.14 g, 0.29 mmol) was dissolved in a mixture of 0.5 M HCl (aq.)/ EtOAc: 4/1 (10 mL) and the mixture was stirred for 30 min at room temperature. Subsequently, the reaction mixture was concentrated *in vacuo*. Precipitation in diethyl ether afforded 0.06 g (0.28 mmol) of (2*R*,3*R*)-2,3-diamino-4,4-dimethylbutyrolactone dihydrochloride **23**.

(2*R*,3*R*)-2,3-Diamino-4,4-dimethylbutyrolactone dihydrochloride 23

White crystals, yield 94%. $[\alpha]_D$ +12.5 (*c* 0.3, MeOH). Mp 243.8 \pm 1.5 °C. IR (cm⁻¹): v_{max} 1042, 1070, 1136, 1273, 1500, 1763,

1787, 2857. ¹H NMR (300 MHz, CD₃OD, int. ref. H₂O): δ 1.48 (3H, s), 1.59 (3H, s), 3.97 (1H, d, J = 10.46 Hz), 4.61 (1H, d, J = 10.46 Hz). ¹³C NMR (75 MHz, D₂O, int. ref. CH₃CN): δ 21.7, 26.5, 52.3, 57.2, 84.9, 168.1. MS (ES, pos. mode) m/z (%): 145 (M + H⁺ - 2×HCl, 100). Anal. calcd for C₆H₁₄Cl₂N₂O₂: C 33.19; H 6.50; N 12.90; found: C 33.55; H 6.51; N 12.66.

Synthesis of (*S_S*,2*R*,3*R*)-ethyl 2-amino-4-chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate *syn*-24

To a solution of $(S_S, 2R, 3R)$ -ethyl 2-(diphenylmethyleneamino)-4-chloro-4-methyl-3-(p-toluenesulfinylamino)pentanoate syn-5a (0.50 g, 0.98 mmol) in acetone/H2O: 2/1 (30 mL) was added dropwise trifluoroacetic acid (5 equiv, 4.89 mmol, 0.38 mL) at room temperature. The reaction mixture was stirred for 15 min at room temperature and subsequently quenched with NH₄OH in H_2O until pH = 10 and concentrated *in vacuo*. The residue was redissolved in water (10 mL) and NH₄OH in H₂O was added until pH = 10. The aqueous phase was extracted with CH_2Cl_2 (3) \times 10 mL). The combined organic phases were dried (MgSO₄), filtered and evaporated in vacuo. The crude product was purified by rapid filtration over a short silica column with petroleum ether and the silica was subsequently extracted with CH₂Cl₂/ MeOH: 4/1. The latter phase was filtered and evaporated in vacuo to yield 0.28 g (0.81 mmol) of $(S_S, 2R, 3R)$ -ethyl 2-amino-4-chloro-4-methyl-3-(p-toluenesulfinylamino)pentanoate syn-24.

(*S_S*,2*R*,3*R*)-Ethyl 2-amino-4-chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate *syn*-24

Yellowish oil, yield 83%. $[\alpha]_{\rm D}$ +155.2 (*c* 0.5, CHCl₃). IR (cm⁻¹): $v_{\rm max}$ 811, 1064, 1090, 1224, 1734, 3208. ¹H NMR (300 MHz, CDCl₃): δ 1.36 (3H, t, *J* = 7.15 Hz), 1.63 (3H, s), 1.69 (2H, br s), 1.74 (3H, s), 2.41 (3H, s), 4.07 (1H, d × d, *J* = 9.1 Hz, 1.10 Hz), 4.17 (1H, d, *J* = 1.10 Hz), 4.24–4.37 (2H, m), 5.40 (1H, d, *J* = 9.1 Hz), 7.30 (2H, d, *J* = 8.0 Hz), 7.63 (2H, d, *J* = 8.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 21.3, 29.2, 30.8, 53.3, 62.2, 65.3, 73.0, 125.4 (2C), 129.5 (2C), 141.4, 142.8, 173.0. MS (ES, pos. mode) *m*/*z* (%): 347 (M + H⁺, 100). HRMS (ES) calcd for C₁₅H₂₃ClN₂O₃S: 347.1191 MH⁺; found: 347.1205.

Acknowledgements

The authors are indebted to the "Institute for the Promotion of Innovation through Science and Technology – Flanders" (IWT-Vlaanderen) and the Research Foundation – Flanders (FWO – Vlaanderen) for financial support.

References

- (a) G. L. Cantoni, Annu. Rev. Biochem., 1975, 44, 435;
 (b) A. P. Townsend, S. Roth, H. E. L. Williams, E. Stylianou and N. R. Thomas, Org. Lett., 2009, 11, 2976; (c) M. Fontecave, M. Atta and E. Mulliez, Trends Biochem. Sci., 2004, 29, 243.
- 2 F. Couty and G. Evano, Org. Prep. Proced. Int., 2006, 38, 427.
- 3 (a) M. Ueki, D. P. Galoni Galonić, F. H. Vaillancourt, S. Garneau-Tsodikova, E. Yeh, D. A. Vosburg, F. C. Schroeder, H. Osada and C. T. Walsh, *Chem. Biol.*, 2006, **13**, 1183; (b) F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. E. O'Connor and C. T. Walsh, *Nature*, 2005, **436**, 1191;

(29) W. L. Kelly, M. T. Boyne II, E. Yeh, D. A. Vosburg, D. P. Galonić,
N. L. Kelleher and C. T. Walsh, *Biochemistry*, 2007, 46, 359;
(d) H. K. Webb and R. G. Matthews, *J. Biol. Chem.*, 1995, 270, 17204;
(e) T.-T. Chen, T. Sanjiki, H. Kato and M. Ohta, *Bull. Chem. Soc. Jpn.*, 1967, 40, 2398.

- 4 M. R. Seyedsayamdost, J. R. Chandler, J. A. V. Blodgett, P. S. Lima, B. A. Duerkop, K.-I. Oinuma, E. P. Greenberg and J. Clardy, *Org. Lett.*, 2010, **12**, 716.
- 5 K. Liu, R. L. White, J. Y. He and L. C. Vining, J. Antibiot., 1995, 48, 347.
- 6 H. Yoshida, N. Arai, M. Sugoh, J. Iwabuchi, K. Shiomi, M. Shinose, Y. Tanaka and S. Omura, J. Antibiot., 1994, 47, 1165.
- 7 L. C. Blasiak, F. H. Vaillancourt, C. T. Walsh and C. L. Drennan, *Nature*, 2006, **440**, 368.
- 8 J. Biltzer, M. Streibel, H.-J. Langer and S. Grond, Org. Biomol. Chem., 2009, 7, 401.
- 9 (a) F. Fülöp, Chem. Rev., 2001, 101, 2181; (b) F. Fülöp, T. A. Martinek and G. K. Toth, Chem. Soc. Rev., 2006, 35, 323; (c) M. A. Gelman and S. H. Gellman, Using constrained β-amino acid residues to control β-peptide shape and function. In Enantioselective Synthesis of β-Amino Acids, 2nd ed.; E. Juaristi, V. Soloshonok, ed., John Wiley & Sons, Inc.: Hoboken, NJ, 2005, pp 527–591; (d) F. Gnad and O. Reiser, Chem. Rev., 2003, 103, 1603; (e) A. Kuhl, M. G. Hahn, M. Dumic and J. Mittendorf, Amino Acids, 2005, 29, 89; (f) J. A. Miller and S. Nguyen, Mini-Rev. Org. Chem., 2005, 2, 39; (g) M. North, J. Pept. Sci., 2000, 6, 301; (h) R. M. Ortuno, Enantioselective Synthesis of β-Amino Acids, 2nd ed.; E. Juaristi, V. Soloshonok, ed., John Wiley & Sons, Inc.: Hoboken, NJ, 2005, pp 117–138.
- (a) S. M. Ross, D. N. Roy and P. S. Spencer, J. Neurochem., 1989, 53, 710; (b) M. I. Sabri, B. Lystrup, D. N. Roy and P. S. Spencer, J. Neurochem., 1995, 65, 1842; (c) M. Abraham and S. M. Abay, Pharmacology, 2009, 381; (d) Z.-Y. Yan, P. S. Spencer, Z.-X. Li, Y.-M. Liang, Y.-F. Wang, C.-Y. Wang and F.-M. Li, Phytochemistry, 2006, 67, 107; (e) L. A. Chase, N. L. Peterson and J. F. Koerner, Toxicol. Appl. Pharmacol., 2007, 219, 1; (f) F. Lambein, Y.-H. Kuo, K. Kusama-Eguchi and F. Ikegami, ARKIVOC, 2007, 45; (g) M. Van Moorhem, F. Lambein and L. Leybaert, Food Chem. Toxicol., 2011, 49, 550.
- 11 (a) A. Copani, P. L. Canonico, M. V. Catania, E. Aronica, V. Bruno, E. Ratti, F. T. M. van Amsterdam, G. Gaviraghi and F. Nicoletti, *Brain Res.*, 1991, **558**, 79; (b) A. Vega and E. A. Bell, *Phytochemistry*, 1967, **6**, 759; (c) A. J. Davis, G. E. Hawkes, P. O'Brien, G. Wang and P. B. Nunn, *J. Chem. Res.* (S), 1991, 84.
- 12 (a) N. Subasinghe, M. Schulte, R. J. Roon, J. F. Koerner and R. L. Johnson, *J. Med. Chem.*, 1992, **35**, 4602; (b) M. B. Hermit, J. R. Greenwood and H. Bräuner-Osborne, *J. Biol. Chem.*, 2004, **279**, 34811.

- 13 (a) H.-C. Chang, T.-H. Lee, L.-Y. Chuang, M.-H. Yen and W.-C. Hung, *Cancer Lett.*, 1999, **145**, 1; (b) P. S. Dobbin, R. C. Hider, A. D. Hall, P. D. Taylor, P. Sarpong, J. B. Porter, G. Xiao and D. van der Helm, *J. Med. Chem.*, 1993, **36**, 2448.
- 14 (a) A. P. Martinez and W. W. Lee, J. Org. Chem., 1965, 30, 317;
 (b) D. E. Jane, K. Hoo, R. Kamboj, M. Deverill, D. Bleakman and A. Mandelzys, J. Med. Chem., 1997, 40, 3645; (c) A. J. H. Nollet and U. K. Pandit, Tetrahedron, 1969, 25, 5983.
- 15 (a) A. Viso, R. Fernández de la Pradilla, A. Garcia and A. Flores, Chem. Rev., 2005, 105, 3167; (b) A. Viso, R. Fernández de la Pradilla, M. Tortosa, A. García and A. Flores, Chem. Rev., 2011, 111, PR1; (c) C. Palomo, J. M. Aizpurua, I. Ganboa and M. Oiarbide, Amino Acids, 1999, 16, 321.
- 16 (a) L. Kiss, S. Mangelinckx, R. Sillanpää, F. Fülöp and N. De Kimpe, J. Org. Chem., 2007, **72**, 7199; (b) L. Kiss, S. Mangelinckx, F. Fülöp and N. De Kimpe, Org. Lett., 2007, **9**, 4399.
- 17 F. A. Davis, Y. Zhang, Y. Andemichael, T. Fang, D. L. Fanelli and H. Zhang, J. Org. Chem., 1999, 64, 1403.
- 18 (a) F. A. Davis and J. H. Deng, Org. Lett., 2004, 6, 2789; (b) F. A. Davis, Y. Zhang and H. Qiu, Org. Lett., 2007, 9, 833; (c) J. Ezquerra, C. Pedregal, I. Merino, J. Florez, J. Barluenga, S. Garcia-Granda and M.-A. Llorca, J. Org. Chem., 1999, 64, 6554.
- 19 M. B. Gillies, J. E. Tønder, D. Tanner and P.-O. Norrby, J. Org. Chem., 2002, 67, 7378.
- (a) F. A. Davis, P. Zhou and G. V. Reddy, J. Org. Chem., 1994, 59, 3243;
 (b) F. A. Davis, H. Liu, P. Zhou, T. Fang, G. V. Reddy and Y. Zhang, J. Org. Chem., 1999, 64, 7559.
- 21 S. P. Allwein, E. A. Secord, A. Martins, J. V. Mitten, T. D. Nelson, M. H. Kress and U. H. Dolling, *Synlett*, 2004, 2489.
- 22 J. Hernández-Toribio, R. Gómez Arrayás and J. C. Carretero, *Chem.-Eur. J.*, 2010, 16, 1153.
- 23 S. C. Bergmeier and P. P. Seth, Tetrahedron Lett., 1999, 40, 6181.
- (a) E. Alonso, D. J. Ramón and M. Yus, *Tetrahedron*, 1997, 53, 14355;
 (b) J. M. Concellón, H. Rodríguez-Solla and C. Simal, *Org. Lett.*, 2008, 10, 4457.
- 25 (a) F. A. Davis, H. Liu and G. V. Reddy, *Tetrahedron Lett.*, 1996, **37**, 5473; (b) Y. Pei, K. Brade, E. Brulé, L. Hagberg, F. Lake and C. Moberg, *Eur. J. Org. Chem.*, 2005, 2835.
- 26 K. Ajayi, V. V. Thakur, R. C. Lapo and S. Knapp, Org. Lett., 2010, 12, 2630.
- 27 G. Sabitha, B. V. S. Reddy, S. Abraham and J. S. Yadav, *Tetrahedron Lett.*, 1999, 40, 1569.
- 28 H.-D. Arndt, R. Welz, S. Müller, B. Ziemer and U. Koert, *Chem.–Eur. J.*, 2004, **10**, 3945.
- 29 (a) M. Teplitski, U. Mathesius and K. P. Rumbaugh, *Chem. Rev.*, 2011, 111, 100; (b) M. E. Mattmann and H. E. Blackwell, *J. Org. Chem.*, 2010, 75, 6737.